

Rapport annuel d'activité de génétique postnatale

Sommaire

Introduction	2
Activité de cytogénétique	5
Activité de recherche d'une anomalie chromosomique par analyse moléculaire	
Activité de génétique moléculaire	. 12

Introduction

Contexte

Un examen de génétique constitutionnelle postnatale consiste à analyser les caractéristiques génétiques héritées ou acquises à un stade précoce du développement prénatal.

Cette analyse a pour objet (Article R. 1131-1 du code de la santé publique) :

- Soit de poser, de confirmer ou d'infirmer le diagnostic d'une maladie à caractère génétique chez une personne ;
- Soit de rechercher les caractéristiques d'un ou plusieurs gènes susceptibles d'être à l'origine du développement d'une maladie chez une personne ou les membres de sa famille potentiellement concernés :
- Soit d'adapter la prise en charge médicale d'une personne selon ses caractéristiques génétiques.

Les examens de génétique tumorale somatique et les examens réalisés dans le cadre du don (notamment analyses HLA dans le cadre de la greffe) sont en dehors du champ de la loi de bioéthique et donc de ce rapport annuel d'activité.

Différentes techniques permettent d'analyser ces caractéristiques génétiques. Si l'anomalie génétique est visible au niveau du chromosome, les techniques utilisées seront le plus souvent des techniques de cytogénétique (caryotype) y compris de cytogénétique moléculaire (hybridation in situ fluorescente : FISH). Si l'anomalie se situe au niveau de la molécule d'ADN, du gène, une technique de génétique moléculaire sera plutôt employée. Cette frontière autrefois franche entre cytogénétique et génétique moléculaire tend à disparaitre avec l'avènement de techniques qui permettent d'appréhender des remaniements chromosomiques au niveau moléculaire : analyse chromosomique par puce à ADN (ACPA), techniques de séquençage à haut débit aussi appelées séquençage de nouvelle génération (NGS pour *Next Generation Sequencing*), ou encore séquençage massif en parallèle car permettant de tester plusieurs gènes dans une seule technique (panels de gènes).

Ce rapport d'activité de génétique postnatale constitue un outil important pour connaître les pratiques et les besoins, notamment dans le cadre de suivi des PRS (projet régional de santé) et du troisième plan maladies rares (PNMR). Ce rapport, unique en Europe, est en constante évolution pour s'adapter à l'évolution des pratiques.

Matériel et méthode

Les données de génétique postnatale correspondent à l'activité 2019 des laboratoires. Elles ont été recueillies de manière spécifique en coopération avec les équipes Inserm Orphanet.

Une première campagne dite qualitative au mois d'octobre a permis de recueillir le descriptif des panels de gènes (la technique de NGS permet dans une indication clinique donnée d'analyser en un seul examen une série de gènes impliqués) : indication clinique du panel, maladies et gènes testés.

Dix laboratoires¹ n'ont pas transmis leur rapport d'activité avant la fin de la campagne de recueil. Au final, 222 laboratoires ont rendu leur rapport annuel d'activité et parmi eux, sept laboratoires n'ont pas eu d'activité au cours de l'année 2019.

Laboratoires de génétique postnatale

Parmi les 215 laboratoires ayant rempli un rapport d'activité auprès de l'Agence de la biomédecine, 61 ont au moins une activité de cytogénétique y compris de cytogénétique moléculaire (5 laboratoires avaient rempli un rapport en 2018 et ne l'ont pas fait en 2019) et 189 au moins une activité de génétique moléculaire. Trentecinq laboratoires réalisent des examens dans les deux activités. Un peu plus d'un tiers des laboratoires autorisés pour la génétique moléculaire le sont uniquement pour une activité limitée (35%). Dans cette dernière situation, l'activité peut être limitée à un ou plusieurs examens de réalisation et d'interprétation généralement plus simples et qui nécessitent une expertise spécifique (exemple en hématologie, pharmacologie) (tableaux POSTNATAL1 et POSTNATAL2).

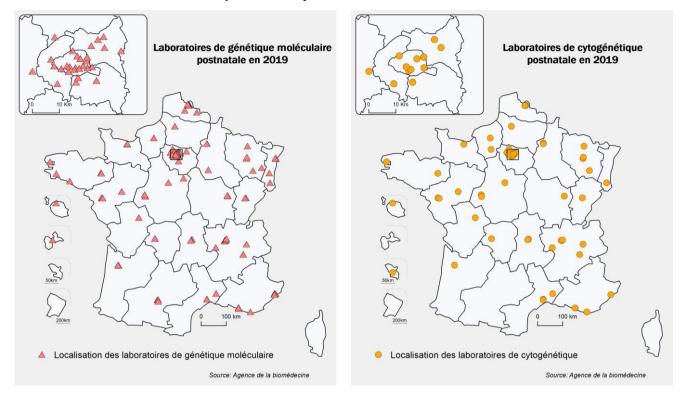
¹ Trois de ces laboratoires ont indiqué ne pas avoir eu d'activité en 2019.

Les deux cartes de la figure POSTNATAL1 montrent la répartition géographique des laboratoires sur le territoire français. La répartition est à peu près équilibrée en dehors de la Guyane, de Mayotte et de la Corse qui sont dépourvues de laboratoires. La Martinique ne possède pas de laboratoire de génétique moléculaire. La répartition des laboratoires sur le territoire donne une indication sur l'organisation et l'offre de soins nationale mais ne permet pas d'appréhender l'offre de soins de proximité. En effet, souvent les laboratoires travaillent en réseau. Les prélèvements voyageant, certains laboratoires proposent un diagnostic d'expertise pour l'ensemble de la France. Dans le contexte de l'utilisation à titre diagnostique de l'outil NGS, les laboratoires ayant une activité non limitée s'inscrivent dans les recommandations professionnelles spécifiant l'importance d'utiliser le réseau des laboratoires d'expertise de la pathologie/gène donné pour l'analyse et l'interprétation des résultats. Seule une cartographie des consultations de génétique pourrait montrer l'accès aux soins au niveau régional.

Tableau POSTNATAL1. Laboratoires ayant déclaré une activité de génétique postnatale entre 2015 et 2019

	2015	2016	2017	2018	2019
Nombre de laboratoires avec une activité de cytogénétique ⁽¹⁾	71	67	66	66	61
Nombre de laboratoires avec une activité de génétique moléculaire	184	186	191	191	189
. avec une activité à autorisation non limitée	121	121	125	122	123
. avec une activité à autorisation limitée	63	65	66	69	66
Nombre total de laboratoires ⁽²⁾	226	224	225	223	215

⁽¹⁾ Y compris, les laboratoires avec une activité exclusive de cytogénétique moléculaire.


Tableau POSTNATAL2. Activités pratiquées par les laboratoires de génétique moléculaire ayant une autorisation limitée entre 2015 et 2019

		Nombre de laboratoir					
	2015	2016	2017	2018	2019		
Facteurs II et V	33	33	33	36	31		
Hématologie	18	12	11	12	11		
Hémochromatose	10	12	13	13	13		
Analyses de biologie moléculaire appliquées à la cytogénétique	3	3	2	4	3		
Pharmacogénétique	12	13	12	11	12		
Typages HLA et maladie	11	16	18	18	20		
Autre	12	9	10	10	8		

⁽²⁾ Certains laboratoires proposent une activité de génétique moléculaire et de cytogénétique.

Figure POSTNATAL1. Répartition géographique des laboratoires de cytogénétique et de génétique moléculaire postnatale ayant déclaré une activité en 2019

Résumé de l'activité de génétique postnatale

En 2019, 531 520 personnes ont bénéficié d'un examen génétique constitutionnelle (tableau POSTNATAL3. En 2018, ce chiffre était de 454 773 ce qui représente une augmentation de plus de 16,9 %. Cette augmentation, bien qu'observée dans tous les domaines, est principalement liée à aux examens de génétique moléculaire.

Chaque activité est détaillée dans le chapitre qui lui est dédié.

Tableau POSTNATAL3. Résumé de l'activité de génétique postnatale entre 2015 et 2019

	2015	2016	2017	2018	2019
Nombre total d'individus testés	-	-	-	457414	531520
Cytogénétique					
Nombre d'individus testés	67744	65343	67761	68229	69040
Nombre total d'analyses	76086	74764	78308	80126	81713
. par caryotype	64382	62365	64255	64883	66422
. par FISH	11704	12399	14053	15243	15291
Génétique moléculaire (y compris pharmacogénétique)					
Nombre d'individus testés	379960	367724	410801	399852	457565
Nombre de maladies différentes recherchées ⁽¹⁾	1514	3053	3157	3366	3259
Analyse chromosomique par puces					
Nombre de dossiers rendus	16543	17831	18022	19329	21390

⁽¹⁾ Maladies répertoriées dans la classification Orphanet.

Activité de cytogénétique

Caryotype et FISH

L'activité de cytogénétique postnatale augmente en 2019 en comparaison avec les années précédentes avec 69 040 individus qui ont bénéficié d'un caryotype ou d'une FISH (tableau POSTNATAL3). Avec 66 422 examens en 2019, le caryotype reste très pratiqué en génétique postnatale (tableau POSTNATAL4) et on observe une progression de 2,4% par rapport à l'année 2018. Les analyses d'hybridations in situ en fluorescence (FISH) sont souvent réalisées en complément d'un caryotype. Les FISH réalisées dans le cadre de validation de résultats de puces ne sont pas comptabilisées ici.

Les grands groupes d'indications sont présentés dans les tableaux POSTNATAL4 et POSTNATAL5 et la figure POSTNATAL2. Depuis 2016, les indications « don de gamètes » et « recherche d'une anomalie constitutionnelle suite à la réalisation d'un examen somatique » ont été ajoutées au tableau. Auparavant comptabilisées dans « autre », elles ont été individualisées du fait de leur fréquence.

Les examens de cytogénétique postnatale les plus souvent prescrits portent sur l'indication « troubles de la reproduction » (46 439 caryotypes et 6 537 FISH). Le nombre de caryotypes pour cette indication augmente régulièrement depuis 2015 (+14,3%). L'augmentation a été de 3,8% entre 2018 et 2019.

Les examens du caryotype pour l'indication « don de gamètes » qui avaient augmenté de 24,3% entre 2016 et 2018 se sont stabilisés en 2019. Le taux d'anomalies diagnostiquées est 0,7% pour les anomalies équilibrées et 0,5% pour les anomalies déséquilibrées, ce qui est attendu car il ne s'agit pas ici de patients mais de donneurs potentiels dont le profil se rapproche de celui de la population générale.

Concernant l'indication « Déficience intellectuelle, malformation, anomalies du développement », le nombre d'examens de cytogénétique par caryotype après avoir chuté régulièrement depuis plusieurs années : -33,0% entre 2014 et 2018 a augmenté en 2019 (+4% vs 2018) retrouvant un niveau comparable à celui de 2017. Pour cette indication le pourcentage d'anomalies déséquilibrées diagnostiquées est de 13,2%. Cette remontée du nombre d'examens sera à confirmer sur l'année 2020.

Tableau POSTNATAL4. Activité de cytogénétique postnatale en 2019

				Nor	mbre d'examens
Indications	Techniques	Examens réalisés	Résultats normaux	Anomalies équilibrées	Anomalies déséquilibrées
Déficience intellectuelle, malformation, anomalies	Caryotype	11218	9614	126	1478
du développement	FISH	5270	4160	77	1033
Troubles de la reproduction	Caryotype	46439	45016	683	740
	FISH	6537	5509	553	475
Maladies cassantes	Caryotype	322	279	0	43
	FISH	4	4	0	0
Études familiales	Caryotype	5055	4367	579	109
	FISH	2845	2048	333	464
Don de gamètes	Caryotype	1944	1921	13	10
	FISH	100	84	7	9
Recherche d'une anomalie constitutionnelle suite	Caryotype	175	136	20	19
à la réalisation d'un examen somatique	FISH	57	32	11	14
Autre	Caryotype	1269	1159	37	73
	FISH	478	374	39	65
Total	Caryotype	66422	62492	1458	2472
	FISH	15291	12211	1020	2060

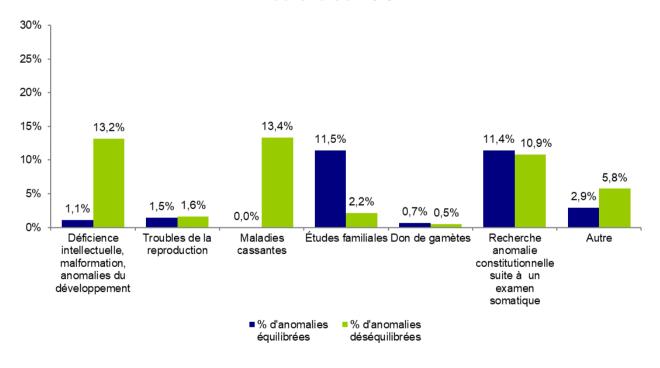


Tableau POSTNATAL5. Evolution de l'activité de cytogénétique postnatale selon l'indication du prélèvement entre 2015 et 2019

In diagram (1)	Taabaiawaa		Nomb	re d'exa	amens	
Indications ⁽¹⁾	Techniques	2015	2016	2017	2018	2019
Déficience intellectuelle, malformation, anomalies du	Caryotype	14220	11993	11175	10788	11218
développement	FISH	5370	4914	4617	5007	5270
Troubles de la reproduction	Caryotype	40626	40740	43854	44837	46439
	FISH	3060	4328	6158	6965	6537
Maladies cassantes	Caryotype	281	316	304	284	322
	FISH	6	8	5	3	4
Études familiales	Caryotype	6004	5760	5365	5608	5055
	FISH	2638	2488	2647	2777	2845
Don de gamètes	Caryotype	-	1546	1602	1922	1944
	FISH	-	33	68	80	100
Recherche d'une anomalie constitutionnelle suite à la réalisation	Caryotype	-	101	112	112	175
d'un examen somatique	FISH	-	28	44	54	57
Autre	Caryotype	3251	1909	1843	1332	1269
	FISH	630	600	514	357	478
Total	Caryotype	64382	62365	64255	64883	66422
	FISH	11704	12399	14053	15243	15291

⁽¹⁾ Depuis 2016, les indications « don de gamètes » et « recherche d'une anomalie constitutionnelle suite à la réalisation d'un examen somatique » ont été ajoutées. Auparavant, elles étaient comptabilisées dans la catégorie « autre ».

Figure POSTNATAL2. Fréquence des anomalies identifiées par caryotype selon l'indication et le type d'anomalie en 2019

Tableau POSTNATAL6. Evolution de la fréquence des anomalies identifiées par caryotype entre 2015 et 2019

Indications ⁽¹⁾	% d'anomalies équilibrées				% d'anomalie déséquilibrée					
	2015	2016	2017	2018	2019	2015	2016	2017	2018	2019
Déficience intellectuelle, malformation, anomalies du développement	1,5	1,0	1,1	1,1	1,1	11,1	10,7	12,5	13,6	13,2
Troubles de la reproduction	1,6	1,6	1,6	1,4	1,5	1,7	1,6	1,8	2,1	1,6
Maladies cassantes	0,0	0,0	0,0	0,0	0,0	13,5	7,9	8,6	6,0	13,4
Études familiales	10,5	11,6	10,9	10,7	11,5	4,8	2,1	2,1	2,3	2,2
Don de gamètes	-	1,2	0,6	0,5	0,7	-	0,4	0,5	0,4	0,5
Recherche d'une anomalie constitutionnelle suite à la réalisation d'un examen somatique	-	25,7	15,2	26,8	11,4	-	11,9	17,0	14,3	10,9
Autre	3,1	4,7	3,6	3,1	2,9	8,4	9,9	9,3	6,5	5,8

⁽¹⁾ Depuis 2016, les indications « don de gamètes » et « recherche d'une anomalie constitutionnelle suite à la réalisation d'un examen somatique » ont été ajoutées. Auparavant, elles étaient comptabilisées dans la catégorie « autre ».

Suivi du dépistage prénatal de la trisomie 21

En plus de ces grands groupes d'indications définis en collaboration avec les sociétés savantes de cytogénétique, l'Agence de la biomédecine recueille spécifiquement le nombre de cas de trisomies 21 diagnostiquées en génétique postnatale lorsqu'il n'y a pas eu de diagnostic durant la période prénatale (tableaux POSTNATAL 7 à 10). Cette donnée fait partie du dispositif global de suivi du dépistage de la trisomie 21 et fait l'objet d'une analyse dans ce contexte (cf. rapport annuel d'activité de diagnostic prénatal : https://rams.agence-biomedecine.fr/resume-des-laboratoires-impliques-dans-le-dipositif-de-depistage-et-de-diagnostic-de-la-trisomie-21).

L'absence de diagnostic prénatal correspond à plusieurs situations : soit des femmes ayant eu un dépistage positif et ne souhaitant pas avoir de diagnostic, soit des femmes ayant eu un faux négatif du dépistage prénatal, soit des femmes n'ayant eu ni dépistage par marqueurs sériques maternels ni diagnostic au cours de leur grossesse.

Le parcours prénatal des femmes reste difficile à connaitre et le taux de parcours inconnu est très important.

En 2019, dans de telles situations, 413 enfants ont été diagnostiqués porteurs d'une trisomie 21 en postnatal. Une tendance vers la diminution de ce chiffre semble se dégager lorsqu'on suit l'évolution depuis 2017.

Parmi ces naissances, le parcours prénatal des femmes est inconnu pour près de 35% d'entre elles. Parmi celles dont le parcours est connu, 46,5 % des femmes n'avaient pas réalisé de dépistage par marqueurs sériques maternels. Parmi les 144 femmes avec un dépistage par marqueurs sériques maternels, 35 avaient un risque inférieur à 1/1000 (faux négatifs), soit 26% des femmes avec un seuil de risque renseigné, dont 30 issus de tests combinés du 1er trimestre et 3 de tests du 2nd trimestre.

En 2019, le dispositif de dépistage prénatal de la trisomie 21 a évolué en introduisant l'ADNIcT21 selon les modalités précisées par l'arrêté relatif aux bonnes pratiques.

Les informations relatives aux résultats du dépistage d'aneuploïdies sur l'ADN fœtal circulant dans le sang maternel (ADNIcT21) montrent que 5 enfants sont nés avec une trisomie 21 alors que le dépistage génétique non invasif avait donné un résultat négatif et 1 après un résultat non exploitable. Pour rappel, 75 653 dépistages génétiques non invasifs avaient été réalisés en France en 2018 (voir rapport d'activité de génétique prénatale). L'interprétation de ce résultat est donc difficile et doit se faire dans le cadre plus large du suivi du dépistage.

Tableau POSTNATAL7. Suivi du nombre de trisomies 21 diagnostiquées par caryotype postnatal⁽¹⁾ entre 2015 et 2019

	2015	2016	2017	2018	2019
Nombre d'enfants nés vivants diagnostiqués T21 par caryotype postnatal	481	488	500	454	413

⁽¹⁾ Diagnostic postnatal de trisomie 21 d'enfants nés vivants en France sans diagnostic prénatal.

Tableau POSTNATAL8. Parcours prénatal pour les marqueurs sériques maternels⁽¹⁾ des trisomies 21 diagnostiquées par caryotype postnatal⁽²⁾ en 2019

	Nombre d'enfants nés vivants diagnostiqués T21 par caryotype postnatal
Dépistage de la trisomie 21 par les marqueurs sériques	144
Sans dépistage de la trisomie 21 par les marqueurs sériques	125
Dépistage par les marqueurs sériques inconnu	144
Total	413

⁽¹⁾ Avec ou sans ADNIcT21.

Tableau POSTNATAL9. Résultat du dépistage prénatal des trisomies 21 diagnostiquées par caryotype postnatal⁽¹⁾ en 2019

Résultat du dépistage prénatal par marqueurs sériques maternels	Dépistage combiné du 1 ^{er} trimestre			Dépistage séquentiel intégré		Dépistage des marqueurs sériques du 2 ^e trimestre		Examen de dépistage inconnu		Total
	N	%	N	%	N	%	N	%	N	%
Risque > 1/50	30	29,7	3	42,9	3	30,0	8	30,8	44	30,6
Risque [1/1000 - 1/50[36	35,6	3	42,9	1	10,0	5	19,2	45	31,3
A risque avec seuil inconnu	3	3,0	0	0,0	1	10,0	7	26,9	11	7,6
Risque < 1/1000	30	29,7	1	14,3	3	30,0	1	3,8	35	24,3
Résultat inconnu	2	2,0	0	0,0	2	20,0	5	19,2	9	6,3
Total	101	100,0	7	100,0	10	100,0	26	100,0	144	100,0

⁽¹⁾ Diagnostic postnatal de trisomie 21 d'enfants nés vivants en France sans diagnostic prénatal.

Tableau POSTNATAL10. Résultat du dépistage d'aneuploïdies sur ADN fœtal circulant dans le sang maternel que ce soit en dépistage primaire ou après utilisation des marqueurs sériques maternels des trisomies 21 diagnostiquées par caryotype postnatal⁽¹⁾ en 2019

Résultat du dépistage d'aneuploïdies sur l'ADN fœtale libre circulant dans le sang maternel	
T21	53
Non exploitable	1
Absence de T21	5
Inconnu	0
Total	59

⁽¹⁾ Diagnostic postnatal de trisomie 21 d'enfants nés vivants en France sans diagnostic prénatal.

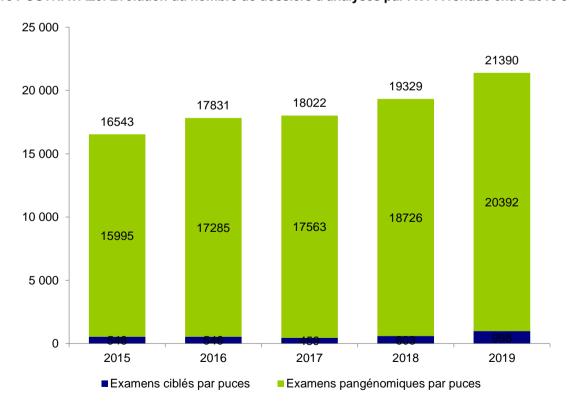
⁽²⁾ Diagnostic postnatal de trisomie 21 d'enfants nés vivants en France sans diagnostic prénatal.

Activité de recherche d'une anomalie chromosomique par analyse moléculaire

Contexte

Les recherches d'anomalies chromosomiques par analyse moléculaire sont des techniques effectuées à la fois par certains laboratoires de cytogénétique et par des laboratoires de génétique moléculaire.

L'organisation des différents laboratoires ou plateformes étant très variable, l'indicateur choisi est le nombre de dossiers rendus et non pas le nombre d'analyses réalisées. Cette donnée correspond à un résultat diagnostique rendu au prescripteur après analyse des puces à ADN et validation de l'anomalie génétique identifiée par une autre technique, en général FISH ou qPCR (quantitative Polymerase Chain Reaction).


Analyse chromosomique par ACPA

Le rapport d'activité recense 21 390 dossiers d'analyses par puces à ADN rendus au prescripteur en 2019. Depuis 2015 on observe une augmentation de 29,3% de cet examen, l'augmentation est de 10,7% entre 2018 et 2019. Près de 95% de ces examens portent sur des analyses pangénomiques et non des analyses ciblées (figure POSTNATAL3, tableau POSTNATAL11, tableau POSTNATAL12).

Après avoir diminué de 2015 à 2018 (de 21,6% à 16,9%), le taux de dossiers positifs rendus au prescripteur pour les examens pangénomiques a augmenté à 17,6% en 2019 avec 3 580 dossiers.

L'évolution de l'activité par indication (tableau POSTNATAL14) montre que l'indication « Déficience intellectuelle ou trouble des apprentissages dans un cadre syndromique » reste l'indication majoritaire avec 29 % des prescriptions. Les deux indications suivantes sont « troubles envahissants du développement, autisme, épilepsie » et « déficience intellectuelle ou trouble des apprentissages isolés ».

Figure POSTNATAL3. Evolution du nombre de dossiers d'analyses par ACPA rendus entre 2015 et 2019

Tableau POSTNATAL11. Evolution des examens ciblés par ACPA entre 2015 et 2019

	Examens ciblés par ACI						
	2015	2016	2017	2018	2019		
Nombre de laboratoires avec une activité	11	10	12	9	11		
Nombre de dossiers rendus	548	546	459	603	998		
Nombre de dossiers positifs rendus ⁽¹⁾	105	206	128	218	280		
% de dossiers positifs rendus	19,2	37,7	27,9	36,2	28,1		

⁽¹⁾ Un dossier est considéré comme positif lorsqu'un résultat d'anomalie est rendu.

Tableau POSTNATAL12. Evolution de l'activité des examens pangénomiques par ACPA entre 2015 et 2019

	Examens pangénomiques par ACP								
	2015	2016	2017	2018	2019				
Nombre de laboratoires avec une activité	45	44	44	45	47				
Nombre de dossiers rendus	15995	17285	17563	18726	20392				
Nombre de dossiers positifs rendus ⁽¹⁾	3460	3416	3244	3159	3580				
% de dossiers positifs rendus	21,6	19,8	18,5	16,9	17,6				

⁽¹⁾ Un dossier est considéré comme positif lorsqu'un résultat d'anomalie est rendu.

Tableau POSTNATAL13. Examens pangénomiques par ACPA selon l'indication réalisés en 2019

Indications	Nombre de dossiers rendus	Nombre de dossiers positifs	% de dossiers positifs rendus
Déficience intellectuelle ou trouble des apprentissages dans un cadre syndromique	5911	1217	20,6
Déficience intellectuelle ou trouble des apprentissages isolés	3666	695	19,0
Troubles envahissants du développement / Autisme / Épilepsie	3596	367	10,2
Malformations sans retard psychomoteur	2857	386	13,5
Études familiales	1501	274	18,3
Fœtopathologie	1245	218	17,5
Caractérisation d'une anomalie découverte par caryotype ou par une autre technique	280	169	60,4
Autres	1336	254	19,0
Total	20392	3580	17,6

Tableau POSTNATAL14. Evolution du nombre d'examens pangénomiques par ACPA selon l'indication entre 2015 et 2019

Indications ⁽¹⁾	Nombre de dossiers rendus							
Indications	2015	2016	2017	2018	2019			
Déficience intellectuelle ou trouble des apprentissages dans un cadre syndromique	5422	5744	5801	6288	5911			
Déficience intellectuelle ou trouble des apprentissages isolés	2790	3280	3282	3268	3666			
Troubles envahissants du développement / Autisme / Épilepsie	2133	2586	3031	3280	3596			
Malformations sans retard psychomoteur	1879	2104	2159	2589	2857			
Études familiales	-	970	646	810	1501			
Fœtopathologie	704	757	697	669	1245			
Caractérisation d'une anomalie découverte par caryotype ou par une autre technique		300	306	264	280			
Autres	2740	1544	1641	1558	1336			
Total	15995	17285	17563	18726	20392			

⁽¹⁾ Depuis 2016, l'indication « études familiales » a été ajoutée. Auparavant, elle était comptabilisée dans la catégorie « autre ».

Autres recherches d'anomalies chromosomiques par analyse moléculaire

D'autres techniques de génétique moléculaire permettent la recherche d'anomalies chromosomiques, notamment : la MLPA (*Multiplex ligation-dependent probe amplification*), QF-PCR (*Quantitative Fluorescence - polymerase chain reaction*) et la QMPSF (*Quantitative Multiplex PCR of Short Fragments*). Une part de ces examens est réalisée dans le contexte de validation d'un autre examen, notamment d'une puce. Pour les autres situations, elles permettent le plus souvent de poser le diagnostic de maladies qui sont décrites dans la partie relative à la génétique moléculaire. L'utilisation de ce type d'examens diminue notablement (tableau POSTNATAL15).

Tableau POSTNATAL15. Evolution des autres recherches d'anomalies chromosomiques par analyse moléculaire entre 2015 à 2019

	2015	2016	2017	2018	2019
Autres recherches d'anomalies chromosomiques par analyse moléculaire (MLPA,					
QF-PCR, QMPSF, autre)	14160	11749	11894	8675	6013

Activité de génétique moléculaire

Contexte

L'identification des maladies est réalisée d'après la classification de l'encyclopédie Orphanet. Le code ORPHA est un identifiant unique, stable dans le temps, associé à chaque entité de la classification Orphanet des maladies rares. Ces entités peuvent être des groupes de maladies, des maladies ou des sous-types de maladies. Les numéros ORPHA sont destinés, entre autres, à être inclus dans les systèmes d'information en santé afin de permettre l'identification des patients ayant une maladie rare, qu'elle soit génétique ou pas.

Le numéro ORPHA désigne des entités cliniques qui peuvent être associées à un ou plusieurs gènes. Ainsi peuvent être comptabilisées comme deux pathologies distinctes deux formes d'une même maladie enregistrées sous deux numéros ORPHA différents. Chaque numéro ORPHA peut correspondre à un ou plusieurs numéros OMIM également utilisés par les laboratoires.

La génétique moléculaire est guidée par une succession d'évolutions technologiques avec l'utilisation du séquençage de nouvelle génération (NGS). En pratique, pour de très nombreuses maladies pouvant impliquer plusieurs gènes ou pour les pathologies qui partagent une « porte d'entrée » clinique identique, les laboratoires testaient les gènes les uns après les autres avant l'arrivée de cette technologie. Avec le séquençage massif parallèle (technologie NGS) les laboratoires ont pu développer des panels. Un panel est un ensemble de gènes testés pour une indication. Ainsi, lorsqu'un prélèvement nécessite plusieurs examens différents afin de poser un diagnostic il devient possible de les réaliser en une seule analyse. En pratique, pour un individu, avant le NGS, le nombre d'examens comptabilisés correspondait à la somme des gènes testés. Avec les panels, le nombre d'examens comptabilisés est égal à un par patient quel que soit le nombre de gènes inclus dans le panel.

En plus des panels, certains laboratoires proposent du séquençage d'exome, voire dans le cadre du plan France Médecine Génomique du séquençage de génome. L'analyse d'exome est l'analyse de l'ensemble (ou presque) des exons de tous (ou presque) les gènes d'un individu. Le séquençage du génome est le séquençage de l'ensemble (ou presque) du patrimoine génétique de la personne.

L'Agence de la biomédecine fait donc régulièrement évoluer le rapport d'activité afin de rendre le plus compte de la réalité de la pratique.

Dans la suite du rapport seront distinguées d'une part, les activités en lien avec le diagnostic de maladies et d'autre part, les activités en lien avec la pharmacogénétique.

Diagnostic des maladies génétiques

En 2019, 419 474 personnes ont eu un examen de génétique moléculaire, qu'il s'agisse de cas index (personne symptomatique chez qui est réalisé le diagnostic) ou d'apparentés. Plusieurs examens peuvent être réalisés pour une même personne. Le nombre total d'examens réalisés en génétique moléculaire a été de 438 329 en 2019.

Les laboratoires français ont réalisé des examens diagnostiques pour 3 229 maladies différentes (selon la classification Orphanet). Le suivi de cette donnée au cours du temps montre qu'après une augmentation régulière du nombre de maladies différentes recherchées on observe en 2019 une diminution de cette donnée (-3,1%).

Si l'augmentation des dernières années était probablement liée à l'arrivée du NGS et la constitution de panels, la diminution en 2019 pourrait s'expliquer par la montée en charge du séquençage d'exome pour lequel le rapport ne peut parfaitement appréhender les indications.

Parmi les laboratoires, 119 déclarent travailler en lien avec une filière de santé maladies rares du plan national maladies rares (Tableau POSTNATAL16). Un même laboratoire peut travailler avec plusieurs filières.

31 laboratoires sont dans le réseau Génétique et Cancer.

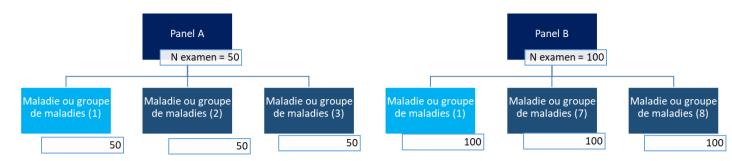


Illustration POSTNATAL 1 : Explication des calculs du nombre d'examens et du nombre de fois où une maladie est testée

L'illustration POSTNATAL1 schématise la manière dont sont comptés et présentés les examens. Le nombre total d'examens réalisés est égal à la somme du nombre d'examens réalisés pour chaque panel. Dans l'exemple ci-dessus le nombre total d'examens égale Panel A + Panel B = 50 + 100. Au total 150 examens ont été réalisés. L'analyse par maladie (ou groupe de maladies) est basée sur le n° ORPHA. Le nombre de fois où une maladie (ou groupe de maladies) a été testée est égal à la somme du nombre d'examens pour des panels dans lesquels elle est représentée. Dans l'exemple ci-dessus : la maladie 1 est testée dans les panels A et B, elle aura été testée 150 fois. La maladie 2 est testée uniquement dans le panel A, elle aura été testée 50 fois.

Ainsi le nombre total d'examens réalisés (438 329) n'est pas égal à la somme du nombre de fois où des maladies ont été testées (12 920 651). C'est la force des panels que de pouvoir tester plusieurs gènes et donc de rechercher plusieurs pathologies en un examen. L'utilité de cette démarche réside en l'augmentation des chances de poser un diagnostic à partir de signes cliniques parfois non spécifiques.

A noter que les examens pour l'hémochromatose de type 1 et la thrombophilie non rare restent très prescris et réalisés (tableau POSTNATAL18). Ces examens sont respectivement proposés par 70 et 52 laboratoires. Il s'agit des 2 seuls examens de génétique moléculaire répertoriés dans la nomenclature des actes de biologie médicale. Si en volume, ces deux tests sont importants, leur réalisation est peu couteuse et peu chronophage (variations génétiques ciblées) par rapport à l'analyse plus complexe et exhaustive de la séquence des autres gènes. Le nombre de laboratoires qui proposent ce dernier type d'examen augmente régulièrement.

La liste des 50 examens les plus réalisés en France (tableau POSTNATAL19) montre la présence de plusieurs maladies pour lesquelles les gènes impliqués sont des gènes de susceptibilité. L'ensemble des examens par code ORPHA est disponible dans le tableau 20 et par gènes dans le tableau 21. Il est important de rappeler ici l'arrêté du 27 mai 2013 définissant les règles de bonnes pratiques applicables à l'examen des caractéristiques génétiques d'une personne à des fins médicales qui précise que « Les examens de génétique ne doivent être prescrits que lorsqu'ils ont une utilité clinique et qu'ils sont souhaités par la personne. Le seul fait qu'un examen soit disponible et réalisable ne justifie ni de sa prescription ni de sa réalisation » et que « de nombreux variants génétiques (polymorphismes) sont actuellement identifiés comme ne contribuant à modifier que faiblement un risque de maladie. Le risque de développer la maladie est bien inférieur à celui de la prédisposition. L'anomalie génétique n'est ni nécessaire ni suffisante pour développer la maladie ».

Avec 306 658 examens en 2019 les indications les plus réalisées ont été dans le cadre de prédisposition aux cancer du sein et / ou de l'ovaire (ORPHA145, ORPHA213524, ORPHA227535) (Tableau POSTNATAL19).

Les maladies génétiques sont très majoritairement rares, voire très rares. Développer des examens diagnostiques pour ces dernières peut se révéler très complexe. Ainsi, les laboratoires se sont généralement spécialisés : 87 laboratoires sont seuls à proposer le diagnostic d'une maladie pour toute la France et 934 maladies (29 %) ne sont diagnostiquées que dans un seul laboratoire (tableau POSTNATAL22). Une attention particulière doit être portée sur la nécessité de garantir une qualité d'expertise d'interprétation des examens. Celle-ci passe encore par le maintien de l'exercice en réseau des laboratoires qui individuellement ne pourront développer l'expertise nécessaire à l'interprétation des résultats obtenus notamment sur l'ensemble d'un génome.

Les laboratoires français réalisent entre 1 et plus de 1 064 diagnostics de maladies différentes. Néanmoins, 21,3% des laboratoires ne proposent qu'un ou deux diagnostics de maladies différentes (tableau POSTNATAL24).

Par ailleurs, 688 prélèvements ont été envoyés à l'étranger par des laboratoires autorisés pour les examens des caractéristiques génétiques. Les maladies génétiques pouvant être extrêmement rares, certains examens ne sont pas proposés en France afin de garantir l'expertise d'interprétation. Au regard du nombre total d'examens réalisés en France, la part envoyée à l'étranger reste exceptionnelle (0,16%).

La figure POSTNATAL4 montre la répartition des indications par nombre d'examens pratiqués et illustre notamment la rareté de la majorité des maladies génétiques. En effet, 71% des maladies sont testées moins de 1000 fois.

Le tableau POSTNATAL25 décrit la répartition des examens en fonction de la taille totale (exprimée en kb) des segments génomiques analysés. L'intérêt de cette donnée consiste principalement au suivi de la taille des panels. C'est par ailleurs l'unité de mesure choisie pour les examens réalisés par NGS dans le RIHN (Référentiel des actes Innovants Hors Nomenclature).

Pour la première fois en 2018 l'Agence de la biomédecine a recueilli le délai moyen de rendu d'un examen au prescripteur (tableau POSTNATAL27). Il s'agit d'une estimation du temps déclaré par le laboratoire. Cette information très importante en matière de santé publique devra faire l'objet d'une amélioration de sa qualité et d'un suivi. En 2019 1/3 des résultats ont été rendus aux prescripteurs en moins d'un mois, 51,5% entre 1 mois et 6 mois et 16,5% en plus de 6 mois. Les différences de délais peuvent s'expliquer en partie par la nature variable des examens allant de l'utilisation de trousses commerciales testant 2 variants (exemple des facteurs II et V de la coagulation) à des panels de plus de 100 gènes. Néanmoins une analyse plus fine sera nécessaire et réalisée avec les professionnels de la génétique.

Outre les panels, dans le même objectif de limitation de l'impasse diagnostique, les séquençages d'exomes et de génomes se sont développés. En 2019, 32 laboratoires ont rendu 5 169 rapports d'analyse d'exomes au prescripteur. Dans le cadre du plan France médecine génomique 2025 deux laboratoires, plateformes de séquençage très haut débit ont été autorisées. Des pré-indications ont été définies par la Haute Autorité de Santé. Des premiers prélèvements ont été reçus par les plateformes en fin d'année 2019, ainsi aucun résultat n'avaient été rendu aux prescripteurs fin 2019. L'activité de ces plateformes sera importante à partir de l'année 2020. Par ailleurs, trois laboratoires ont rendu 92 résultats d'analyse de génome entier aux prescripteurs (tableau POSTNATAL26).

Avec l'utilisation de plus en plus importante d'examens pangénomiques, l'Agence de la biomédecine a mis en place le recueil d'information relatif aux données incidentes (tableaux POSTNATAL28 et 29). On entend par donnée incidente une variation pathogène sans relation directe avec l'indication initiale ayant conduit à la prescription de l'examen et de découverte fortuite. En 2019, 43 variations incidentes ont été déclarées dans le cadre du rapport annuel à l'Agence de la biomédecine. Les techniques qui ont conduit à la mise en évidence de ces variations ont été les panels de gènes, l'ACPA et le Whole Exome Sequencing. Aucun génome n'a fait l'objet de déclaration de données incidentes. En 2019, l'Agence de la biomédecine a publié des recommandations de bonnes pratiques en matière de données additionnelles lors d'un examen de séquençage pangénomique, précisant en particulier l'information et le consentement indispensables pour ces situations.

Tableau POSTNATAL16. Répartitions du nombre de laboratoires et du nombre d'examens rendus avec une indication selon leur appartenance aux filières de maladies rares en 2019

		Nombre de laboratoires déclarant appartenir à la filière	Nombre d'examens rendus pour une indication associée à la filière
Filières malad	lies rares		
AnDDI-Rares	anomalies du développement et déficience intellectuelle de causes rares	60	17206
FILNEMUS	maladies neuromusculaires	38	16705
DéfiScience	maladies rares du développement cérébral et déficience intellectuelle	37	12929
G2M	maladies héréditaires du métabolisme	34	8175
FIRENDO	maladies rares endocriniennes	33	9815
Muco CFTR	mucoviscidose et affections liées à une anomalie de CFTR	30	9205
ORKiD	maladies rénales rares	24	4594
MHémo	maladies hémorragiques constitutionnelles	21	2790
OSCAR	maladies rares de l'os, du calcium et du cartilage	20	5545
FILFOIE	maladies hépatiques rares de l'enfant et de l'adulte	19	3637
BRAIN-TEAM	maladies rares à expression motrice ou cognitive du système nerveux central	19	9598
CARDIOGEN	maladies cardiaques héréditaires	16	8384
SENSGENE	maladies rares sensorielles	16	4107
FIMARAD	maladies rares en dermatologie	16	2282
MCGRE	maladies constitutionnelles rares du globule rouge et de l'érythropoïèse	13	4658
MARIH	maladies rares immuno-hématologiques	12	3044
RESPIFIL	maladies respiratoires rares	9	3289
TETECOU	maladies rares de la tête, du cou et des dents	8	380
FAI ² R	maladies auto-immunes et auto-inflammatoires systémiques rares	8	2025
FAVA-Multi	maladies vasculaires rares avec atteinte multisystémique	6	3088
FIMATHO	malformations abdomino-thoraciques	5	240
FILSLAN	sclérose latérale amyotrophique et maladie du neurone moteur	3	781
NeuroSphinx	complications neurologiques et sphinctériennes des malformations pelviennes et médullaires rares	2	0
Autres réseau	ıx		
GGC	Groupe génétique et cancer	16	35902

Tableau POSTNATAL17. Activité de génétique moléculaire postnatale (hors pharmacogénétique) entre 2015 et 2019

	2015	2016	2017	2018	2019
Nombre de maladies différentes recherchées ⁽¹⁾	1490	3029	3133	3340	3229
Nombre d'examens rendus au prescripteur	385813	413621	416980	413687	438329
- dont cas index	205958	200951	229887	336092	352068
- dont cas apparentés	42459	48154	52158	55513	49591
Nombre d'examens de cas index positifs rendus au prescripteur	39974	41511	44031	64608	68759

⁽¹⁾ Maladies répertoriées dans la classification Orphanet.

Tableau POSTNATAL18. Nombre d'examens et de laboratoires pour les maladies recherchées par au moins vingt laboratoires par génétique moléculaire postnatale en 2019

n° ORPHA	Indication	Nombre de laboratoires qui recherchent l'indication	Nombre de fois où la maladie (n° ORPHA) a été testée
ORPHA64738	NON RARE EN EUROPE : Thrombophilie non rare	70	113768
ORPHA139498	NON RARE EN EUROPE : Hémochromatose type 1	52	73300
ORPHA908	Syndrome de l'X fragile	36	170990
ORPHA586	Mucoviscidose	35	101952
ORPHA825	NON RARE EN EUROPE : Spondylarthrite ankylosante	28	120156
ORPHA1646	Délétion partielle du chromosome Y	28	23965
ORPHA555	NON RARE EN EUROPE : Maladie coeliaque	25	5470
ORPHA117	Maladie de Behçet	23	78060
ORPHA93256	Syndrome tremblement-ataxie lié à une prémutation de l'X fragile	22	34756
ORPHA145	Syndrome héréditaire de prédisposition au cancer du sein et de l'ovaire	21	191952
ORPHA778	Syndrome de Rett	21	46184
ORPHA2073	Narcolepsie de type 1	21	3628
ORPHA109	Syndrome de Bannayan-Riley-Ruvalcaba	20	71448
ORPHA1934	Encéphalopathie épileptique infantile précoce	20	52016
ORPHA3095	Syndrome de Rett atypique	20	46944
ORPHA48	Absence congénitale bilatérale des canaux déférents	20	21140
ORPHA144	Syndrome de Lynch	20	16028

Tableau POSTNATAL19. Classement des 50 indications faisant l'objet du plus grand nombre de fois ou la maladie (n° orpha) a été testée en 2019 et leur suivi depuis 2015

n° ORPHA	Indication	2015	2016	2017	2018	2019
ORPHA145	Syndrome héréditaire de prédisposition au cancer du sein et de l'ovaire	124644	150282	146460	152994	191952
ORPHA908	Syndrome de l'X fragile	117050	143420	149240	173280	170990
ORPHA825	NON RARE EN EUROPE : Spondylarthrite ankylosante	104898	109276	102608	95388	120156
ORPHA64738	NON RARE EN EUROPE : Thrombophilie non rare	92561	122361	125304	115859	113768
ORPHA586	Mucoviscidose	83920	87520	93656	95376	101952
ORPHA117	Maladie de Behçet		20790	70092	68898	78060
ORPHA139498	NON RARE EN EUROPE : Hémochromatose type 1		87192	90596	96012	73300
ORPHA1775	Dyskératose congénitale	7028	28182	36288	66724	72086

n° ORPHA	Indication	2015	2016	2017	2018	2019
ORPHA109	Syndrome de Bannayan-Riley-Ruvalcaba	-	39598	92144	95212	71448
ORPHA213524	Syndrome héréditaire de prédisposition au cancer de l'ovaire	-	7800	27735	44550	67428
ORPHA201	Syndrome de Cowden	1666	15729	46774	34797	57960
ORPHA1934	Encéphalopathie épileptique infantile précoce	8400	26648	35632	54528	52016
ORPHA34587	Glycogénose par déficit en LAMP-2	88	47465	31603	64295	47641
ORPHA227535	Cancer du sein héréditaire	-	4752	22930	29706	47278
ORPHA199	Syndrome de Cornelia de Lange	1530	20350	26150	61700	47200
ORPHA3095	Syndrome de Rett atypique	5968	26528	34808	64608	46944
ORPHA778	Syndrome de Rett	6992	26104	36288	61896	46184
ORPHA500	Syndrome de Noonan avec lentigines multiples	9226	10948	22680	33362	45500
ORPHA90650	Syndrome oto-palato-digital type 1	-	25368	38080	70336	44058
ORPHA90652	Syndrome oto-palato-digital type 2	-	25368	38080	70336	44058
ORPHA648	Syndrome de Noonan	10360	17080	23702	35448	43806
ORPHA805	Sclérose tubéreuse de Bourneville	9328	34480	38448	68864	43712
ORPHA2609	Déficit isolé en complexe I	-	28683	28026	47790	42867
ORPHA3071	Syndrome de Costello	286	29666	35893	64272	41847
ORPHA3451	Syndrome de West	938	24549	32844	56182	41776
ORPHA442835	Encéphalopathie épileptique précoce indéterminée	-	14784	28288	46416	41264
ORPHA819	Syndrome de Smith-Magenis	336	18228	23052	59916	37464
ORPHA306	Epilepsie infantile familiale bénigne	114	16638	23214	38316	37368
ORPHA52368	Syndrome de Mohr-Tranebjaerg	-	24453	21960	41247	36180
ORPHA847	Alpha-thalassémie-déficience intellectuelle liée à l'X	1755	15453	19764	51228	36180
ORPHA2754	Syndrome orofaciodigital type 6	448	25746	28042	55706	35868
ORPHA85278	Syndrome de Christianson	1400	20440	26816	51368	35728
ORPHA818	Syndrome de Smith-Lemli-Opitz	1152	24880	29024	60080	35376
ORPHA59	Syndrome d'Allan-Herndon-Dudley	324	16620	22698	44166	35190
ORPHA93256	Syndrome tremblement-ataxie lié à une prémutation de l'X fragile	17180	25308	27124	37108	34756
ORPHA452	Lissencéphalie liée à l'X avec anomalies génitales	-	22527	30519	54657	34686
ORPHA140927	Convulsions néonatales-infantiles bénignes familiales	12	14076	20058	33474	34542
ORPHA1762	Trisomie Xq28	84	18725	21056	45535	33943
ORPHA744	Syndrome de Protée	42	20846	34930	38724	32816
ORPHA2462	Syndrome de Shprintzen-Goldberg	954	24237	30267	48825	32814
ORPHA33069	Syndrome de Dravet	5322	18714	22860	34848	32724
ORPHA36387	Epilepsie généralisée avec convulsions fébriles plus	-	14748	21528	35082	32010
ORPHA110	Syndrome de Bardet-Biedl	5700	27227	38532	24130	31977
ORPHA31709	Syndrome de convulsions infantiles-choréoathétose	80	13035	19000	32855	31785
ORPHA726	Syndrome d'Alpers-Huttenlocher	448	19736	22480	23848	31232
ORPHA52503	Déficit en transporteur de la créatine lié à l'X	144	13800	17592	43616	30904
ORPHA569	Migraine hémiplégique familiale ou sporadique	924	13140	18072	27300	30576
ORPHA2869	Syndrome de Peutz-Jeghers	2142	12761	41132	30065	30464
ORPHA892	Maladie de von Hippel-Lindau	4680	21320	40688	33184	30176
ORPHA568	Microphtalmie type Lenz	-	11956	16870	40803	30170

Tableau POSTNATAL20. Liste des examens réalisés par numéro Orpha entre 2015 et 2019 Le tableau est téléchargeable au format Excel.

Tableau POSTNATAL21. Liste des gènes qui ont fait l'objet d'un examen en 2019 et nombre de cas index positifs

Le tableau est téléchargeable au format Excel.

Figure POSTNATAL4. Répartition des maladies par nombre d'examens réalisés en 2019

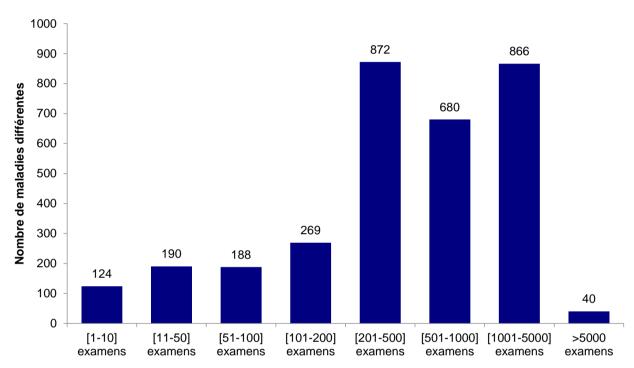


Tableau POSTNATAL22. Description de l'activité de génétique moléculaire postnatale entre 2015 et 2019

	2015	2016	2017	2018	2019
Nombre de laboratoires					
qui n'étudient que l'hémochromatose type 1 et la thrombophilie non rare	9	10	9	9	8
qui n'étudient que la thrombophilie non rare	23	21	21	20	21
Nombre de laboratoires					
qui diagnostiquent une maladie qui n'est étudiée que dans 1 laboratoire en France	90	86	89	91	87
qui diagnostiquent une maladie qui n'est étudiée que dans 2 laboratoires en France	97	93	98	101	100
Nombre de maladies					
qui ne sont étudiées que dans 1 laboratoire en France	955	977	988	925	929
qui ne sont étudiées que dans 2 laboratoires en France	298	613	620	700	618

Tableau POSTNATAL23. Evolution de l'activité de diagnostic suite à un dépistage néonatal de la mucoviscidose entre 2015 et 2019

	2015	2016	2017	2018	2019
Nombre de laboratoires ayant eu une activité de diagnostic suite à un dépistage néonatal de la mucoviscidose	8	8	7	9	8
Nombre de nouveaux nés analysés	2589	3260	3964	3483	3361
Nombre de cas positifs rendus (2 mutations)	109	80	80	99	105

Tableau POSTNATAL24. Evolution du pourcentage de laboratoires selon le nombre de diagnostics de génétique moléculaire proposés entre 2015 et 2019

Nombre de								Nomb	re de la	boratoires
diagnostics de génétique moléculaire		2015		2016		2017		2018		2019
proposés ⁽¹⁾	N	%	N	%	N	%	N	%	N	%
1 à 2	47	26,7	46	25,6	41	22,3	41	22,0	39	21,3
3 à 10	58	33,0	50	27,8	55	29,9	52	28,0	55	30,1
11 à 20	20	11,4	15	8,3	14	7,6	14	7,5	13	7,1
21 à 35	20	11,4	17	9,4	16	8,7	16	8,6	13	7,1
36 à 100	27	15,3	23	12,8	25	13,6	23	12,4	26	14,2
> 100	4	2,3	29	16,1	33	17,9	40	21,5	37	20,2
Total	176	100,0	180	100,0	184	100,0	186	100,0	183	100,0

⁽¹⁾ Diagnostics répertoriés dans la classification Orphanet.

Tableau POSTNATAL25. Evolution de la répartition des examens avec utilisation des panels en fonction de la quantité d'acide nucléique analysée en kilobases entre 2015 et 2019

Quantité d'acide nucléique analysée (kilobase)		Examens rendus au prescripteur									
		2015		2016		2017		2018		2019	
	N	%	N	%	N	%	N	%	N	%	
<20	19464	30,5	22758	37,8	12769	17,2	13646	16,4	12242	11,7	
20 à 100	30816	48,2	21586	35,8	38733	52,1	43328	52,1	55457	53,1	
100 à 500	6813	10,7	13288	22,1	18526	24,9	21493	25,8	27845	26,6	
>500	6804	10,6	2609	4,3	4379	5,9	4680	5,6	8963	8,6	
Total	63897	100,0	60241	100,0	74407	100,0	83147	100,0	104507	100,0	

Tableau POSTNATAL26. Examens de séquençage de l'exome (WES) et du génome (WGS) en 2019

	2019
Laboratoires qui réalisent le WES	32
Nombre total de WES rendus aux prescripteurs	5169
Laboratoires qui réalisent le WGS	5
Nombre total de WGS rendus aux prescripteurs	91

⁽²⁾ En 2015, 178 laboratoires ont eu une activité de génétique moléculaire, 2 d'entre eux n'ont pas renseigné les diagnostics proposés dans leur laboratoire.

Tableau POSTNATAL27. Répartition des examens selon le délai moyen de rendu d'un examen au prescripteur en 2019

Délai moyen de rendu de résultats ⁽¹⁾	Nombre de tests (unitaire, panel, exome)
< 1 semaine	85
1-2 semaines	249
2 semaines à 1 mois	382
1 à 2 mois	148
2 à 6 mois	1002
6 à 12 mois	233
12 à 18 mois	106
> 18 mois	29

⁽¹⁾ Il s'agit d'une estimation du laboratoire recueillie pour chaque indication.

Tableau POSTNATAL28. Liste des pathologies non reliées avec la prescription initiale rendues aux prescripteurs en 2019

N° ORPHA	Nom de la pathologie	Gène	Nombre de cas rendus
ORPHA130	Syndrome de Brugada	CACNA1C	7
ORPHA101081	Maladie de Charcot-Marie-Tooth type 1A	PMP22	4
ORPHA227535	Cancer du sein héréditaire	ATM	1
		TMEM127	1
		MSH6	1
ORPHA26106	Cancer gastrique diffus héréditaire	CDH1	2
ORPHA145	Syndrome héréditaire de prédisposition au cancer du sein et de l'ovaire	BRCA2	2
ORPHA154	Cardiomyopathie dilatée familiale isolée	MYBPC3	2
ORPHA377	Syndrome de Gorlin	BRCA1	2
ORPHA846	Alpha-thalassémie	HBA1	2
ORPHA1997	Syndrome blépharo-cheilo-odontique	CDH1	2
ORPHA201	Syndrome de Cowden	PALB2	1
		BRCA2	1
ORPHA247798	Polypose adénomateuse familiale atténuée liée à MUTYH	MUTYH	1
ORPHA93622	Maladie de Dent type 1	CLCN5	1
ORPHA813	Syndrome de Silver-Russell	HMGA2	1
ORPHA733	Polypose adénomateuse familiale	APC	1
ORPHA664	Déficit en ornithine transcarbamylase	OTC	1
ORPHA640	Neuropathie héréditaire avec hypersensibilité à la pression	PMP22	1
ORPHA484	NON RARE EN EUROPE : Syndrome de Klinefelter	SRY	1
ORPHA406	NON RARE EN EUROPE : Hypercholestérolémie familiale hétérozygote	LDLR	1
ORPHA293910	Dysplasie ventriculaire arythmogène familiale isolée avec prédominance à droite	PKP2	1
ORPHA29072	Phéochromocytome-paragangliome héréditaire	SDHB	1
ORPHA1646	Délétion partielle du chromosome Y	DAZ1	1
ORPHA101016	Syndrome de Romano-Ward	KCNH2	1
ORPHA144	Syndrome de Lynch	PALB2	1
ORPHA2701	Syndrome Noonan-like avec cheveux anagènes caducs	SHOC2	1
ORPHA261584	Polypose adénomateuse familiale due à une microdeletion 5q22.2	APC	1

Tableau POSTNATAL29. Répartition des techniques qui ont conduit à un résultat non en lien avec la prescription initiale en 2019

	Technique	Nombre de cas rendus				
		2018			2019	
		N	%	N	%	
Panel (NGS)		22	62,9	18	41,9	
Techniques sur puce (ACPA)		9	25,7	15	34,9	
Whole Exome Sequencing (WES)		4	11,4	10	23,3	
Total		35	100,0	43	100,0	

Activité de pharmacogénétique

La pharmacogénétique est l'étude du lien entre certaines caractéristiques génétiques constitutionnelles d'un individu et la réponse de l'organisme à un ou plusieurs médicaments. La prescription des tests de pharmacogénétique dépend donc étroitement de la prescription de certains médicaments et de l'évolution des traitements. En 2019, 38 091 individus ont bénéficié d'un examen de pharmacogénétique. Ce nombre augmente régulièrement. Il y a eu 13% personnes en plus entre 2018 et 2019 et une augmentation de plus de 100% par rapport à 2015. Cinquante-six laboratoires ont déclaré avoir réalisé ces examens dont 25 laboratoires en lien avec le réseau national de pharmacogénétique (RNPGx) (tableau POSTNATAL30). En raison d'un problème de qualité des données le nombre d'examens de pharmacogénétique réalisés n'a pas pu être analysé en 2019.

La liste des examens réalisés est présentée dans le tableau POSTNATAL31

Tableau POSTNATAL30. Evolution de l'activité de pharmacogénétique entre 2015 et 2019⁽¹⁾

	2015	2016	2017	2018	2019
Nombre d'individus testés	18777	20147	22535	33619	38091
Nombre de laboratoires avec une activité de pharmacogénétique	47	51	54	55	56
Nombre de laboratoires ayant uniquement une activité de pharmacogénétique	5	5	7	5	5

Tableau POSTNATAL31. Examens de pharmacogénétique effectués en 2019

ORPHA	DRPHA Indications de l'examen ⁽¹⁾	
ORPHA240841	Toxicité de l'abacavir	23
ORPHA413687	Toxicité et adaptation posologique de l'azathioprine ou 6-mercaptopurine	22
ORPHA240839	Toxicité des dérivés du fluorouracile	20
ORPHA240885	Toxicité de l'irinotécan	20
ORPHA241043	Adaptation posologique du tacrolimus	14
ORPHA240863	Toxicité du cisplatine	11
ORPHA565782	Toxicité au méthotrexate	9
ORPHA413667	Toxicité et adaptation posologique des antidépresseurs ou antipsychotiques	8
ORPHA413674	Toxicité et adaptation posologique des anti-vitamines K	8
ORPHA240935	Résistance au clopidogrel	7
ORPHA240921	Toxicité du voriconazole	7
ORPHA413684	Résistance aux anti-vitamine K	7
ORPHA284121	Toxicité ou non réponse au clozapine	6
ORPHA240905	Toxicité du raltegravir	6
ORPHA565785	Adaptation posologique du méthotrexate	6

oxicité de la codéine	
	4
ésistance au tamoxifène	4
oxicité de l'isoniazide	4
oxicité de l'efavirenz	3
oxicité des statines	3
éponse au traitement anti-viral dans l'hépatite C	3
usceptibilité aux effets indésirables graves de la mercaptopurine	2
urdosage ou adaptation posologique des hypoglycémiants oraux	2
oxicité des curarisants	2
fficacité du belinostat	1
oxicité de l'allopurinol	1
éficit en butyrylcholinestérase	1
hoix d'une option thérapeutique pour le cancer colorectal	1
oxicité de l'ivermectine	1
aucher mis sous Eliglustat	1
0 0 0 6 u u 0 ff 0 6 h	xicité de l'isoniazide xicité de l'efavirenz xicité des statines eponse au traitement anti-viral dans l'hépatite C esceptibilité aux effets indésirables graves de la mercaptopurine erdosage ou adaptation posologique des hypoglycémiants oraux xicité des curarisants ficacité du belinostat xicité de l'allopurinol efficit en butyrylcholinestérase noix d'une option thérapeutique pour le cancer colorectal xicité de l'ivermectine

⁽¹⁾ Indications répertoriées dans la classification Orphanet.